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ANNIHILATOR IDEALS 

BY 
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ABSTRACT 

Here we examine one of the two right Goldie conditions: the ascending chain 
condition on right annihilator ideals, r. ACCL One might well ask if a ring has 
r. ACC ~, does there exist a bound on the lengths of chains of right annihilator 
ideals? Under certain additional hypotheses, this bound does exist. In general, 
however, a bound does not exist, as is shown by the two examples presented 
here. 

Introduction 

Here  we examine one of the two right Goldie conditions: the ascending chain 

condition on right annihilator ideals, r. ACC ~. It is well known that if a ring has 

the other right Goldie condition, no infinite direct sums of right ideals, then 

there exists a bound on the lengths of the direct sums ([1], p. 8). One might well 

ask if a ring has r. ACC +, does there exist a similar bound on the lengths of 

chains of right annihilator ideals? Under  certain additional hypotheses, this 

bound does exist. For example,  if the ring is semiprime, has r. ACC 1, then the 

bound exists if any one of the following holds: 

(1) the ring satisfies a polynomial identity, a p.i. ([4], p. 17); 

(2) the ring is affine with subexponential  growth (also due to Small, unpub- 

lished); 

(3) the ring is a right Goldie ring. 

The third condition follows f rom Goldie 's  theorem which characterizes orders in 

semisimple right Artinian rings as semiprime right Goldie rings ([1], p. 23). A 

prime ring with a bound, n, on the indices of nilpotent elements, not only must 

satisfy ACC l (on both sides), but in addition has n as a bound on chains of 

1-sided annihilator ideals ([3], p. 56). This extends the already known special 
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case for n = 1, i.e. a prime ring with no nilpotent elements has no zero divisors. 

In general, however, a bound need not exist, even if we require the ring to have 

ACC on right and left annihilator ideals. A highly nonaffine, noncommutative 

example due to Fisher appeared in 1971 ([2], p. 516). 

As evidenced by the above positive results, apparently there is a connection 

between the existence of a bound and the satisfying of other finiteness 

conditions. In the first part of this paper we present a commutative ring with 

ACC l which has no bound. As in Fisher's example, this ring fails to be finitely 

generated. In addit ion,  this ring contains a subring with the same properties, 

which is nilpotent. Hence this subring is as far from prime as possible. Then we 

construct a second ring which is noncommutative, finitely generated and prime 

with r. ACC ~, but with no bound. In both examples the rings are isomorphic to 

their opposite rings, so all conditions are satisfied on both sides. These examples 

together with an example due to Irving of an affine p.i. ring with polynomially 

bounded growth, r. ACC • but with no bound, show that the previously 

mentioned positive results cannot be improved. 

A commutative ring with ACC i and no bound 

Let K be an arbitrary commutative domain with an infinite set of commuting 

indeterminates (Xis IJ <= i,i,j EZ+}. Define I to be the homogeneous ideal 

generated by {X~jXk~Xnm} and {X~jX~E, where j ~  k} in the polynomial ring 

P = K[{.~,j}]. The ring we want is the factor ring R = P/I. Let x 0 be the image of 

-~s in R, and let X = {xis}. To clarify the relations among the x~j one might 

examine the following infinite array: 

Xll 

X21 X22 

X31 X32 X33 

The product of any two distinct elements in the same row is zero. The product of 

any three elements in the array is zero. 

We have a natural grading on R by letting the elements in X have degree 1, 

elements in K have degree 0. Then R = RoORIGR2,  where R, = {r ~ R I r is 

homogeneous of degree i}. The set {x,~} is a basis over K for R1, {xijxk~ I(i~ k) or 

(i = k and j = 1)} is a basis over K for R2. Note that (R1R)3 = 0. We will see that 

the ideal RIR contains all the zero divisors in R. Let  r(S) denote tlie right 

annihilator of S. 
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PROPOSITION 1. R has ascending chains of annihilator ideals o[ arbitrary 

lengths. 

PROOF. 

Then  

For  n E Z +, consider:  

A,~ = r{x,j, 1 <=j <= n} = R2 

k-l  ) 
A . k = r { x , i , k < j < - n } = ( t ~ = l x . , R  +R z  

\ 1 = 1  

C7. C7.. A , I §  "'C+A., is a chain of length n - 1. 

Now we show that R has ACC ~. We begin by explicitly de termining the form 

of all annihilator  ideals. 

LEMMA 1. For each positive integer n, let X. = {x,i, 1 _-< j =< n }. Let S be a 

subset of R. (i) I f  S CR2, then r(S)  = R~R. (ii) S~_RjR,  then r(S)  = (0). (iii) I f  

S C R~ R and SZ- R2, then either r(S)  = R2, or there exists n such that Y ~ X , ,  and 

r(S)  = YR + R2. 

PROOF. (i) If S CR2, then obviously r ( S ) =  R , R .  

(ii) First we examine when the product  of two elements  can be zero.  Let  

p, q E R, and let p~, q~ be the components  of p, q in R~. Suppose pq = 0. That  is, 

all the components  of the product  pq are zero:  

(1) po qo = 0, 

(2) poq~ + p~ qo = O, 

(3) poq2 + pl ql + p2qo = O. 

Assume p ff~ R t R ;  that is, po ~ 0. Because R is a torsion-free K-modu le ,  we 

obtain successively from equat ions  (1), (2), and (3) that qo = 0, q~ = 0, and q2 = 0. 

Thus,  if S ~  R~ R, then r(S)  = (0). In particular,  all zero divisors in R lie in Rz R. 

(iii) Now assume p,q E R ~ R .  Then  pq =p~q~ and p~ has the form Za,  x,, q, 

has the form Eb, x,, for some a,, b, ~ K. So 

P' q~ = Z a,,b,,x~,+ Z (aob,k + a,kb,,)X,,X,k + ~, (a, bk, + ak, b,i)X, Xk,. 
l.! j<k i<k 
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Recall that xljx,~ = 0 for j ~  k. Hence 

p~q~ = ~ a,,b,ix,~ + ~ (a,jbk, + a~,b,i)x,,xk,. 
I,/  i < k  

Thus pq = 0 if[ both of the following hold: 

(4) a,,b,j = 0, 

(5) aiibk~ + aktbij = 0, for all i~  k. 

Next we determine r(p) for p E R~ R, p ~  R2. Because p ~  R2, pt has the form 

Ea~ix~i such that at least one a~s is nonzero. For the remainder of this proof 

assume a , , ,~0 .  Let q ~r (p ) .  Then qo=0  and q~ has the form Eb,sx~j where 

b.,. = 0  from (4). Then (5) implies a,sb,,.+a,,,b,s =a , , ,b~ i=0  for all i ~ n .  

Consequently, b~s = 0 for all i ~  n. Thus q~ has the form Et~,.,b.tx.~. Symmetri- 

cally, if one of the b,~'s is nonzero, then pt must have the form Ea,jx,~. That is, if 

there exists k ~  n such that akj~ 0, then all the b.t's must be zero. Thus, in this 

case, r (p )=R2 .  On the other hand, if p~ =Ea,jx,s then r ( p ) =  YR +R2, 

Y = {x,ila.i = 0}. 
Now consider S C R~ R, S,C R2. Note that (XkR + R2) N (X~R + R2) = R2 for 

k ~  l. Because r (S)= f3p~sr(p), for some n there exists Y CX,,  possibly the 

empty set, such that r(S) has the form YR + R2. This completes the proof of 

Lemma 1. 

PROPOSITION 2. R has ACC ~. 

PROOF. Suppose A is a nontrivial annihilator ideal other than R~R. Then 

Lemma 1 implies there exists n E Z +, and Y CX,  such that A has the form 

YR + R2. Note that X, has exactly 2" - 1  proper subsets. So A contains only 

finitely many annihilator ideals. Thus R has the descending chain condition on 

annihilators. Because R is commutative, we conclude that R has ACC ~. 

By considering R, R instead of R~ we have a nilpotent commutative ring with 

ACC ;, and with no bound on the length of its chains of annihilator ideals. 

An aliine prime ring with ACC ~ and no bound 

This example is much more intricate than the commutative one. We begin 

with K = Z/2Z (actually we could use an arbitrary domain) and a set of four 

noncommuting indeterminates {X, Y, Z, W}. We consider the graded factor ring, 

R = A/ I ,  where A is the free algebra K{X, Y, Z, W} and I is the homogeneous 

two-sided ideal of A generated by the following set of monomials: 

B = {ZY '  W X  k W Y ' Z ,  i ~ 0,0 <= k <-_ i}. 
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R is given the grading induced from the standard grading (by total degree) on A, 

in which X, Y,Z,  W each have degree one. Note also that the canonical 

involution on A given by reversing the order of the "letters" in each monomial 

"word" fixes each element of B. Hence there is an induced involution on R. Let 

x,y,z ,w be the images of X, Y,Z,  W respectively. Throughout this example 

greek letters will always denote monomials in x, y, z, w. Certain monomial zero 

divisors, those which are images of the divisors of elements in B, play a key role 

in all that follows. Let U be the set of images of left divisors of elements in B 

and let V be the set of images of right divisors of elements in B. Note that the 

antiautomorphism of R maps U onto V (and vice versa). The letters/x and u 

will always represent elements of U and V respectively. Denote by a Id3 (resp. 

a It/3) that a divides fl on the left (resp. right). 

Our strategy is to explicitly determine the right annihilator ideals by first 

examining the right annihilators of monomials, and then the right annihilators of 

general elements in R. From this we obtain the form of a right annihilator ideal. 

Then it is not difficult to prove that R is prime and has r. ACC ~. 
Note that the ideal I of A has a K-base of monomials, so the right annihilator 

of a monomial in R, as well as the intersection of such annihilators, is generated 

by monomials. Consider two nonzero monomials a,/3 whose product is zero. 

Then some zy iwx k wy~z must occur in the product a/3, but not in a nor in/3. 

Thus a,/3 must have the forms a'/x, v/3' with /z E U, v E V. Because /~ is 

uniquely determined from a we have r (a )=  r(/z). Similarly 1(/3) =/ (v ) .  So we 

need only consider monomials in U and V. The right annihilators of elements in 

U are given by: 

(a) For any t _-> 0, 

r ( zy ' )=  ~, ,R,  
vEV2,~ 

V2., = {y ' - 'wxkwy'z ,O <- - k <-_ i,i >-_ t}. 

(b) For any 0_-< t _-< i, i_->0, 
z t 

r(zy 'wx ' )  = ~ x kwyi zR. 
k = O  

(c) For any i,k,t with 0_<- k _<- i, 0=<t-<_i, i=>0. 

r (zy 'wxkwy ') = y ' - ' zR.  

We obtain dual expressions for the left annihilators of elements in V. 

Next, we make several observations which will be heavily used in the proofs of 

Propositions 5 and 6. 



202 J.w. KERR Isr. J. Math. 

OBSERVATIONS. (1) Note that in each case, r(ix) is generated by r(IX)A V. 

Let U~ ={IX E Uldegwix = i}, V~ ={v E Vldegwv = i}. For IX ~ Uo, r(/x)f3 V 

is an infinite subset of V2 (case (a) above). If Ix E U2, then r(ix) fq V has exactly 

one element (case (c)). The analogous results are true for elements of V~. 

(2) For any v ~ V2., we have l(u) = Rzy', by the dual of case (c). Hence if 

IX E Uo and v E r(ix) f3 V, then l(v) = RIX. 

(3) Suppose r ( ix )Ar( ix ' ) f i0 .  Then r(ix)Ar(ix ') f3 V~O.  Note degwix = 

degwix' because if tx E U~ then r(ix) fq V C_ V2-~. 

(i) If IX ~ U0, then IX = IX'. Thus r(ix) = r(ix'). 

(ii) If IX @ U2, then from case (c) above, r(ix) = r(ix'). 

(iii) If IX E U1 then the i for which zy~w Itix is determined by any v E r(ix)fq 

V. Thus zy 'wl , ix '  and, so, wy'zlrv '  for all v 'Er ( ix ' ) fq  V. In other words, 

r(IX')N V lies in a finite subset of V~ completely determined by any single 

element in r(ix) fq V. 

PROPOSITION 3. R has chains of right (resp. left) annihilator ideals of arbitrary 
lengths. 

= Ek=ox wy~zR, for 0 =  < t_-< i. Then PROOF. Let A,,, r(zy~ wx , )=  ,-, k 

A~.~ +c... ff Ao.~. An application of the involution gives corresponding chains of 

left annihilators. 

Now we can consider the right annihilator of the general element in R. Let C 

be the set of all elements of R of the form l+Z~. ,ea , ,  where the a, are 

monomials. (We assume 1 E C, corresponding to the trivial sum.) For the rest of 

the paper the letters c and d will always denote elements of C. Take any r, s E R. 

Then clearly there exist elements a~,Bj, c~,dj such that r = Y-7=~ a~c~, s = ZT'=, d~/3~, 

and for each j < k, all of the following hold: deg %-< degak, deg/3j _-< deg/3k, 

% Z ~ak, and /3j ,( ,/3~. (Simply group the monomials in r (resp. s) according to 

greatest common left (resp. right) divisors.) 

PROPOSITION 4. Using the above terminology, rs = 0 iff a~c~ dj[3i = 0 for all i, j. 

Moreover, if acdfl = 0 then ct, fl have the forms a'ix, v/3' where Ixv = 0 and 

Ixcdv = O. 

Observe that Proposition 4 implies that the right annihilator of an arbitrary 

element is a finite intersection of right annihilators of elements of the form Ixc. 

Furthermore, elements of the form dv generate r(ixc). 

PROOF OF PROPOSITION 4. Suppose rs = 0  but ~,c,s~O for some i. Each 

nonzero monomial a~3~ in a~c~s must be cancelled by some other term in the 



Vol. 46, 1983 ANNIHILATOR IDEALS 203 

monomial expansion of rs. Hence, a iy  = aj3 for some j r  i. But then ai [taj, or 

vice versa, contradicting the conditions on the a,'s. Hence a~c,s = 0 for all i. A 

symmetric argument yields a~c~d~/3j = 0 for all i,j. 

Now suppose 0 = acd/3. From the form of c and d, we have acd/3 = a/3 + 

E(higher degree monomials). Hence, a/3 = 0. By the earlier consideration of 

monomial annihilators, a and/3 must have the forms a ' /x and v/3' respectively, 

with r ( a ) =  r(tz) and l(/3) and l(v).  Hence acd/3 = 0  iff Ixcdv =0 .  

PROPOSITION 5. I f  S C R such that r(S)  ~ O, then r(S)  has one of the following 

forms: (1) E ~  v2 , dvR, for some t >-_ O, d E C or (2) E;'~I di v, R, for some d, E C. 

PROOF. Without loss of generality, S C{tx~cj}. Define Us ={/x E U[l~c E S  

for some c E C } ,  V , ( s ~ = { v @ V l d v ~ r ( S )  for some d E C } ,  D,~s~= 

{d E R I dv E r(S)  for some v E V}. Proposition 4 implies Us V,~s) = O. 

Assume V,s) i s  infinite. From observations (1) and (3) above Us = {zy'}, for 

some t. Thus V,s) C V2.,. 

CLAIM 1. V,(s) = V2.,. Moreover,  if d ~ D,s) ,  then, for every v E V2.,, dv 

r(S). 

PROOF OF CLAIM 1. Take any d ~ D,s) and any u' E V2,, such that Sdu' = O. 

By observation (2), for each u ~ V2., we have l(u) = Rzy' .  Hence (Sd)u'  = 0 

implies (Sd)u C(Rzy ' )~  = 0, for every u ~ V2,,, as claimed. 

CLAIM 2. If d is any element in D,(s) of minimal degree, then r ( S ) =  

PROOF OF CLAIM 2. If not, pick d' E D,(s) of minimal degree, such that, for 

some u 'EV2., ,  d'u'ff:E~v~.,duR. Of course, degd'_->degd. Let e =  

(d - d')u'  E r(S). Since d, d '  ~ C, d - d '  has no constant term. Hence every 

monomial of e has degree strictly large/" than deg u'. Write e = E ~  d~/3~ where 

for each j < k we have deg/3j -< deg/3k and/3j 4 ~ ,/3k. These conditions assure that 

no nonzero monomial occurs in more than one d~/3~. By Proposition 4, each/3t 

has the form u~3~, where u~ ~ r(S)  f'l V = V2., and dm~ ~ r(S). Since d~ ~ C, /3~ 

occurs as a monomial of d,/3~, hence of e. So, deg/3~ > d e g u ' .  But, if ~-~ is a 

monomial of highest degree in d~, then r~/3~ also occurs in d~/3~, so in e. Hence,  

deg d~ + deg/3~ = deg r~/3t -< deg e ~ deg (d - d ')  + deg u' =< deg d '  + deg u'. 

Because deg/3~ > deg v', we conclude deg d~ < deg d' ,  for each I. It follows by the 

choice of d'  that each d~u~ ~E~v: . ,dvR .  Hence d'u'  = d u ' - e  ~E~v~. ,duR,  a 

contradiction. 
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Now assume V, ts~ is finite. Then clearly, from the proof of Claim 1, we have 

V,~s~f-1 Vz = Q. For each vi E V,~s~, choose d~ of minimal degree such that 

d,v~ E r(S). Then apply the argument used for Claim 2 to obtain r ( S ) =  

REMARK. Suppose r(S)=Zd~v~R, where the di's are of minimal degree as 

above. If d'~ v~ ~ r(S) and degd'~ = d e g d ,  then r(S) = Ed'~ v~R. 

PROPOSITION 6. R has r. ACC ~. 

PROOF. Suppose r(S 0 C r(S2). Clearly V,~s,)C_ Vr~s~). If V, tso is infinite, then, 

by observation (3), and Proposition 5, V~ts,)= V, ts~)= V2., for some t. So there 

exist dl,d2 as in Proposition 5 such that 

d, vR =r(S , )Cr(S2)= ~ d2vR. 
vEV2,f vEV2, I 

Because d~v E r(S2) and d2 is of minimal degree in D, ts~, we have degdt  => 

degd2. By the above remark, if degd~ = degd2, then r (S l )=  r(S2). Thus any 

chain of right annihilators containing r(SO may have at most deg d l +  1 elements. 

Suppose Vr~s,) is finite, r(S,) C r(S2) C--- r(S,) C . . .  and r(Sj) = E~,~v,s,~di.,u~R. 
By observation (3) there is a finite set V' of V determined only by r(St) such 

that, for all j, Vrtsj)C V'. Now if Vrtsj)= V,~so, then, as in the infinite case, 

j _-__ E(deg d~.i + 1). Because V' is finite there are only finitely many j ' s  for which 

V,~sj)C+ V,~sj§ Therefore  the chain must terminate. 

PROPOSITION 7. R is prime. 

PROOF. For any nonzero s E R, r(swyw) = O. 
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